Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences.

نویسندگان

  • W E Skaggs
  • B L McNaughton
  • M A Wilson
  • C A Barnes
چکیده

O'Keefe and Recce [1993] Hippocampus 3:317-330 described an interaction between the hippocampal theta rhythm and the spatial firing of pyramidal cells in the CA1 region of the rat hippocampus: they found that a cell's spike activity advances to earlier phases of the theta cycle as the rat passes through the cell's place field. The present study makes use of large-scale parallel recordings to clarify and extend this finding in several ways: 1) Most CA1 pyramidal cells show maximal activity at the same phase of the theta cycle. Although individual units exhibit deeper modulation, the depth of modulation of CA1 population activity is about 50%. The peak firing of inhibitory interneurons in CA1 occurs about 60 degrees in advance of the peak firing of pyramidal cells, but different interneurons vary widely in their peak phases. 2) The first spikes, as the rat enters a pyramidal cell's place field, come 90 degrees-120 degrees after the phase of maximal pyramidal cell population activity, near the phase where inhibition is least. 3) The phase advance is typically an accelerating, rather than linear, function of position within the place field. 4) These phenomena occur both on linear tracks and in two-dimensional environments where locomotion is not constrained to specific paths. 5) In two-dimensional environments, place-related firing is more spatially specific during the early part of the theta cycle than during the late part. This is also true, to a lesser extent, on a linear track. Thus, spatial selectivity waxes and wanes over the theta cycle. 6) Granule cells of the fascia dentata are also modulated by theta. The depth of modulation for the granule cell population approaches 100%, and the peak activity of the granule cell population comes about 90 degrees earlier in the theta cycle than the peak firing of CA1 pyramidal cells. 7) Granule cells, like pyramidal cells, show robust phase precession. 8) Cross-correlation analysis shows that portions of the temporal sequence of CA1 pyramidal cell place fields are replicated repeatedly within individual theta cycles, in highly compressed form. The compression ratio can be as much as 10:1. These findings indicate that phase precession is a very robust effect, distributed across the entire hippocampal population, and that it is likely to be inherited from the fascia dentata or an earlier stage in the hippocampal circuit, rather than generated intrinsically within CA1. It is hypothesized that the compression of temporal sequences of place fields within individual theta cycles permits the use of long-term potentiation for learning of sequential structure, thereby giving a temporal dimension to hippocampal memory traces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociation between the experience-dependent development of hippocampal theta sequences and single-trial phase precession.

Theta sequences are circuit-level activity patterns produced when groups of hippocampal place cells fire in sequences that reflect a compressed behavioral order of place fields within each theta cycle. The high temporal coordination between place cells exhibited in theta sequences is compatible with the induction of synaptic plasticity and has been proposed as one of the mechanisms underlying t...

متن کامل

Altered phase precession and compression of temporal sequences by place cells in epileptic rats.

In the hippocampus, pyramidal cells encode information in two major ways: rate coding and temporal coding. Rate coding, in which information is coded through firing frequency, is exemplarily illustrated by place cells, characterized by their location-specific firing. In addition, the precise temporal organization of firing of multiple place cells provides information, in a compressed time windo...

متن کامل

Internal operations in the hippocampus: single cell and ensemble temporal coding

Most of our cognitive life depends on our brain’s ability to generate internal representations of the external world. The hippocampus is a brain structure that supports the formation of internal representations of the spatial environment (O’Keefe and Nadel, 1978) as well as the formation (Scoville and Milner, 1957) and consolidation (Squire and Alvarez, 1995) of episodic memories. In rodents, h...

متن کامل

Hippocampal Correlation Coding

Hippocampal correlation coding is a putative neural mechanism underlying episodic memory. In this thesis, we look at two related phenomena: phase precession and reverse replay of behavioral sequences. Phase precession refers to the decrease of the firing phase of a place cell with respect to the local theta rhythm during the crossing of the place field. Reverse replay refers to reactivation of ...

متن کامل

Recall of memory sequences by interaction of the dentate and CA3: A revised model of the phase precession

Behavioral and electrophysiological evidence indicates that the hippocampus has a special role in the encoding and recall of memory sequences. Importantly, the hippocampal phase precession, a phenomenon recorded as a rat moves through place fields, can be interpreted as cued recall of the sequence of upcoming places. The phase precession can be recorded in all hippocampal regions, but the role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hippocampus

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 1996